Date: 2015-01-13
Time: 15:30-16:30
Location: BURN 1205
Abstract:
A mixture of coalesced generalized hyperbolic distributions is developed by joining a finite mixture of generalized hyperbolic distributions with a mixture of multiple scaled generalized hyperbolic distributions. The result is a mixture of mixtures with shared model parameters and common mode. We begin by discussing the generalized hyperbolic distribution, which has the t, Gaussian and others as special cases. The generalized hyperbolic distribution can represented as a normal-variance mixture using a generalized inverse Gaussian distribution. This representation makes it a suitable candidate for the expectation-maximization algorithm. Secondly, we discuss the multiple scale generalized hyperbolic distribution which arises via implementation of a multi-dimensional weight function. A parameter estimation scheme is developed using the ever-expanding class of MM algorithms and the Bayesian information criterion is used for model selection. Special consideration is given to the contour shape. We use the coalesced distribution for clustering and compare them to finite mixtures of skew-t distributions using simulated and real data sets. Finally, the role of generalized hyperbolic mixtures within the wider model-based clustering, classification, and density estimation literature is discussed.
Speaker
Ryan P. Browne is an Assistant Professor in the Department of Mathematics and Statistics at McMaster University, in Hamilton, Ontario.