Enriched post-selection models for high dimensional data
Reza Drikvandi · Apr 8, 2022
Date: 2022-04-08
Time: 15:35-16:35 (Montreal time)
https://mcgill.zoom.us/j/83436686293?pwd=b0RmWmlXRXE3OWR6NlNIcWF5d0dJQT09
Meeting ID: 834 3668 6293
Passcode: 12345
Abstract:
High dimensional data are rapidly growing in many domains, for example, in microarray gene expression studies, fMRI data analysis, large-scale healthcare analytics, text/image analysis, natural language processing and astronomy, to name but a few. In the last two decades regularisation approaches have become the methods of choice for analysing high dimensional data. However, obtaining accurate estimates and predictions as well as valid statistical inference remains a major challenge in high dimensional situations. In this talk, we present enriched post-selection models that aim to improve parameter estimation and prediction, and to facilitate statistical inferences in high dimensional regression models. The enriched post-selection method enables us to construct valid post-selection inference for regression parameters in high dimensions. We discuss the empirical and asymptotic properties of the enriched post-selection method.