Date: 2016-09-16
Time: 16:00-17:00
Location: LB-921.04, Library Building, Concordia Univ.
Abstract:
There are some time series which exhibit long-range dependence as noticed by Hurst in his investigations of river water levels along Nile river. Long-range dependence is connected with the concept of self-similarity in that increments of a self-similar process with stationary increments exhibit long-range dependence under some conditions. Fractional Brownian motion is an example of such a process. We discuss statistical inference for stochastic processes modeled by stochastic differential equations driven by a fractional Brownian motion. These processes are termed as fractional diffusion processes. Since fractional Brownian motion is not a semimartingale, it is not possible to extend the notion of a stochastic integral with respect to a fractional Brownian motion following the ideas of Ito integration. There are other methods of extending integration with respect to a fractional Brownian motion. Suppose a complete path of a fractional diffusion process is observed over a finite time interval. We will present some results on inference problems for such processes.
Speaker
Dr. B.L.S. Prakasa Rao is Ramanujan Chair Professor at CR Rao Advanced Institute, Hyderabad, India