Date: 2021-09-24

Time: 15:00-16:00 (Montreal time)

https://mcgill.zoom.us/j/9791073141

Meeting ID: 979 107 3141

Abstract:

In the data science courses at the University of British Columbia, we define data science as the study, development and practice of reproducible and auditable processes to obtain insight from data. While reproducibility is core to our definition, most data science learners enter the field with other aspects of data science in mind, for example predictive modelling, which is often one of the most interesting topic to novices. This fact, along with the highly technical nature of the industry standard reproducibility tools currently employed in data science, present out-ofthe gate challenges in teaching reproducibility in the data science classroom. Put simply, students are not as intrinsically motivated to learn this topic, and it is not an easy one for them to learn. What can a data science educator do? Over several iterations of teaching courses focused on reproducible data science tools and workflows, we have found that providing extra motivation, guided instruction and lots of practice are key to effectively teaching this challenging, yet important subject. Here we present examples of how we deeply motivate, effectively guide and provide ample practice opportunities to data science students to effectively engage them in learning about this topic.

Speaker

Jennifer Hill is a Professor of Applied Statistics at New York University. She develops and evaluates methods to help answer the types of causal questions that are vital to policy research and scientific development. In particular she focuses on situations in which it is difficult or impossible to perform traditional randomized experiments, or when even seemingly pristine study designs are complicated by missing data or hierarchically structured data. Most recently Hill has been pursuing two intersecting strands of research. The first focuses on Bayesian nonparametric methods that allow for flexible estimation of causal models and are less time-consuming and more precise than competing methods (e.g. propensity score approaches). The second line of work pursues strategies for exploring the impact of violations of typical causal inference assumptions such as ignorability (all confounders measured) and common support (overlap). Hill has published in a variety of leading journals including Journal of the American Statistical Association, Statistical Science, American Political Science Review, American Journal of Public Health, and Developmental Psychology. Hill earned her PhD in Statistics at Harvard University in 2000 and completed a post-doctoral fellowship in Child and Family Policy at Columbia University’s School of Social Work in 2002.

Hill is also the Director of the Center for Practice and Research at the Intersection of Information, Society, and Methodology (PRIISM) and Co-Director of and the Master’s of Science Program in Applied Statistics for Social Science Research (A3SR). The A3SR program has a new concentration in Data Science for Social Impact. As far as we know this is the first degree granting program in Statistics or Data Science for Social Impact or Social Good in the world.