Magic Cross-Validation Theory for Large-Margin Classification
Boxiang Wang · Jan 11, 2019
Date: 2019-01-11
Time: 15:30-16:30
Location: BURN 1205
Abstract:
Cross-validation (CV) is perhaps the most widely used tool for tuning supervised machine learning algorithms in order to achieve better generalization error rate. In this paper, we focus on leave-one-out cross-validation (LOOCV) for the support vector machine (SVM) and related algorithms. We first address two wide-spreading misconceptions on LOOCV. We show that LOOCV, ten-fold, and five-fold CV are actually well-matched in estimating the generalization error, and the computation speed of LOOCV is not necessarily slower than that of ten-fold and five-fold CV. We further present a magic CV theory with a surprisingly simple recipe which allows users to very efficiently tune the SVM. We then apply the magic CV theory to demonstrate a straightforward way to prove the Bayes risk consistency of the SVM. We have implemented our algorithms in a publicly available R package magicsvm, which is much faster than the state-of-the-art SVM solvers. We demonstrate our methods on extensive simulations and benchmark examples.