Statistical analysis of two-level hierarchical clustered data
Chien-Lin Su · Oct 21, 2016
Date: 2016-10-21
Time: 15:30-16:30
Location: BURN 1205
Abstract:
Multi-level hierarchical clustered data are commonly seen in financial and biostatistics applications. In this talk, we introduce several modeling strategies for describing the dependent relationships for members within a cluster or between different clusters (in the same or different levels). In particular we will apply the hierarchical Kendall copula, first proposed by Brechmann (2014), to model two-level hierarchical clustered survival data. This approach provides a clever way of dimension reduction in modeling complicated multivariate data. Based on the model assumptions, we propose statistical inference methods, including parameter estimation and a goodness-of-fit test, suitable for handling censored data. Simulation and data analysis results are also presented.