Date: 2022-02-11
Time: 15:30-16:30 (Montreal time)
https://mcgill.zoom.us/j/83436686293?pwd=b0RmWmlXRXE3OWR6NlNIcWF5d0dJQT09
Meeting ID: 834 3668 6293
Passcode: 12345
Abstract:
The cellular states in various biological processes such as cell differentiation, disease progression, and treatment response are often enormously complex and thus hard to be profiled with unimodal profiling (e.g., transcriptome). Although those unimodal measurements had brought success for studies in a large variety of studies, the incomplete (and often misleading) unimodal cellular profiling could lead to
biased and inaccurate conclusions. With the development of biotechnologies, the availability of multi-omics data (bulk or single-cell) is ever-increasing. The rapid-accumulating multi-omics data offers unprecedented opportunities to accurately decode the cellular states in biological process and thus could derive a deep understanding of the change of the cellular states, crucial for finding biomarkers and therapeutic intervention strategies. In this talk, we will discuss a few multimodal methods that we developed to integrate multi-omics data for the discovery of novel regulators for multiple biological processes. Many of the novel predictions from the multimodal methods were experimentally validated and had brought new understandings of the underlying mechanisms for several diseases. I will also discuss how a potential novel COVID19 drug is discovered from such a multi-omics data integration analysis.
Speaker
Dr. Jun Ding is an Assistant Professor from the Department of Medicine at McGill University. His current research interests include applied machine learning in bioinformatics, the single-cell data analysis, computational models for the biomedical data.